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FIG. 2. The total radiation intensity at y = 0, J(0, z), for a 
slab and a square. 

Figure 1 shows that the outward flux decreases as the 
location considered moves to the corner. The corner effects 
are because part of the radiation is scattered out of the side 
surface before reaching the bottom. Backward scattering, 
saya,= -0.7, aiways generates the largest outward flux at 
the bottom, Q;(y, 0). while forward scattering, say at = 0.7, 
generates the smatlest, as shown in Fi8. 1. This is because 
radiation oridnating at a point in the medium or at a bound- 
ary is more easily n&c&d back into the surroundings due to 
a relatively larger backward scattering. Besides, the incident 
radiation penetrating a medium decmases with optical size. 
This tendency is the same as that found in isotropic scattering 
[S] (see also Table 1). 

Figure 2 shows that (i) the total intensity at the locations 
around the bottom is increased by backward scattering, but 
is decreased by forward scattering, (ii) the maximum of the 
total intensity locates about 10% of the optical thickness 
above the bottom, and (iii) the total intensity in a square 
medium is less than that in a slab with the same optical 
thickness. 
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lNTRODUCTlON 

ANALYSFS of laminar mixed convection from a horizontal 
line source of heat have been reported in a number of recent 
studies. These in&de the earliest by Wood It], followed by 
those of Wesscling [2], A&al [3] and K~~n~u~y and 
Gebhart [4]. All these studies were primarily concerned with 
the predictions of velocity and temperature fields. 

In this oaoer. the stability of such flows to small dis- 
turbances \s*in&stigated in- terms of the linear stabifity 
theory. The buoyancy force and the free stream flow are 
taken to be in the same direction. The region sufficiently 
downstream of the source is considered, where buoyancy 
effects dominate. This flow configuration, is usually termed 
aiding mixed convection. 

The effit of the free stream is considered as a perturbation 
in the far-field boundary condition on the tangential velocity 
component of the natural convection plume. This per- 
turbation is termed the mixed conmtion effect and is char- 
acterized by the parameter sM_ Also taken into account is 

the first-order correction to the ‘classicaf boundary layer 
solution to the natural convection plume. This correction 
results from the interaction of the plume with the irrotational 
Bow outside the boundary layer. T?ds perturbation is termed 
the higher-order effect and is characterixed by .sH. The base 
flow is taken to be the classical natural convection plume 
perturbed by eH and sH. The stability analysis is then per- 
formed by expanding the diiurbance lieid too, in terms of 
these two fruition parameters. These two perturbation 
parameters have been so chosen that at zero order, the 
govetning equations reduce to that of the laminar natural 
convection plume. Computed results are presented and dis- 
cussed for Pr = 0.7. 

ANALYSIS 

The mixed convection Row arising from an infinitely long 
horizontat line source of heat is considered as a two-dimen- 
sional steady Row. With the usual Boussinesq approxi- 
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A deftaed in equation (28) B base flow velocity component in they- 

“;; 
We direction 
terars in the expansion for $ in quation (6). 0’ disturbance velocity component in they- 

.i=l,3 direction 
9 acceleration due to gravity W defined in quation (25) 
G (Gr,) “r x vertical coordinate along the plume 
Gr, sBQdc'ikv2 centerline 
H, terms in the expansion for (t-T,) in Y coordinate nonaal to x. 

equation (7). i = 1,3 
k thermal conducti~ty 
Pr Prandtl number 
g(x) local value of therrnaj convected eaergy Greek symbols 

0 thermal mput per uart length of the hne 
; 

6 dh/dx 
source 

R 
coefficient of thermal expansion 

parameter defined in equation (26) WWd~,) 
RI defined in equations (21) and ref. [71 : characteristic thickness of the plume, x/G 
Rex Reynolds number, U,x/v en I/G 

ii 
defined in quatioa (8) f&4 Rex/G2 

6 

defined in equation (14) 
base ffow temprature f 

&?/ax - ag/ay 
~fax-a~fay 

temperature of the disturbance 
:: 

YlS 
AT characteristic temperature difference between defined in quatioas (8) and (9) 

the centerline and the edge of the plume, kinematic viscosity 
QoWx defined in quatioa (9) 

ii base flow velocity component in the x- i 
direction 

; 

terms defined in quatioa (I 5) 
time 

P disturbence velocity component in the x- base flow stream function 
direction J; stream function for disturbaaoe field 

u characteristic plume velocity in the x- 
direction, vG*/x : 

frquency of disturbance 
C0&u. 

mations, neglecting viscous dissipation and pressure terms 
in the energy equation, the full two-dimensional governing 
equations take the form 

where the stream function $ has been so defined that 

u = II.7 and u== -$,. 

Boundary conditions are 

y=O, $=JI,,=T,=O: forallx (3) 

y+=. 1G;-U,, T-rT,; for all x. (4) 

Also for x > 0, the convected energy is 

Q(x) = 
s 
p pc,,$J T- T,) dy = Q,, = constant (5) 

-co 

where Q0 is the thermal input per unit length of the line 
source. 

In the region y < U(S), the base flow can be represented 
as 

and 

t-r= = AT(‘(H,(~~)+BMH~(~)+EHH,(~~)) (7) 

where the governing equations and corresponding boundary 
conditions for F, and H,, i p: I and 3 are given in ref. [7) and 
those for i = 2 are given in the Appeadix. 

In the usual manner for linear stability analyses. we super- 
impose on the base flow an arbitrarily smah diiturbaace of 
the form 

$ = U&S(~) exp (i(h(x) -w)) +c.c. (8) 

Zr’ = AT+(q) exp (i(A(x) -05)) +c.c. (9) 

where ‘c.c.’ denotes compkx conjugate and S, d, and A are 
compkx sad o is taken to be real. Aiso, ii = d;; and P = - $r 

Each flow variable is represented by the sum of its base 
flow component and the disturbance component. Thea by 
subtracting the base fiow equations from the complete two- 
dimensional, time-dependent governing equations and com- 
bining the x- and y-momentum quations to eliminate pres- 
sure terms, the vorticity and energy equations for the dis- 
turbance components are obtained. The linear&d fonas of 
these equations are given as 

aC ac at _ac _a{ 
T&+Ii-& +5;5;; +P&+Lk& = vv*e-gBg (10) 

aF ar aF _aF _aT v 
;ir;+liz “55 +v-+v- ay ay z~(v’S* (11) 

In stability analyses of natural convection boundary layers, 
an approach that has beea successfully used in the past is to 
exploit the linearity of the disturbance equations by repre- 
senting the disturbance field as 

s = s, +&5*+8& (12) 

~~~,+B2~2~3,~, (13) 

where each (.$, 6,) is an integral of the coupled Orr-Sam- 
merfeld quattons, with j = 1 corresponding to the inviscid 
limit and j = 2,3, being characterized by viscous effects. This 
very approach has also been suoressfully used by Carey and 
Gebhart [S) in analyxiag the stability of an aiding mixed 
convection boundary layer tlow adjacent to a vertical 
uniform-flux surface. However, in boundary-free Bows such 
as plumes, B2 and 8, have to be identically zero es pointed 
out by Lia f6) and discussed by Hieber and Nash f7f. A more 
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appropriate method is to expand the disturbance field in 
terms of the perturbation parameters as in ref. {7). Thus 

S = S,(tl)+e,S*(rl)+&HS3(rl) (14) 

d, = Cb,(~)+&u~2(d+eH~J(~) (15) 

A = I\,(X)+&~r\*(X)+S”A~(X). (16) 

Additional quantities that arise are, nondimensionat fre- 
quency $2, complex wave number a and the compiex wave 
speed c, given by 

a = swjw 

dA 
a = ad., = 11, +cMcfI+eHuJ (17) 

c = n/x = c, +&MC*+&“Cr. (18) 

Here, the value of o will be taken as real. 
Substituting the expressions for zi, ti, t7, ii, 2’. F, [and [ 

into equations (10) aad (11) and ordering the terms in terms 
of .eM and eu, the following equations result. 

At zero order : 

L&S,) I (F;a, -n)(S;-afS,)-a,FTS, = 0 (19) 

(6, = H;S,a,/(F;a, -n). (20) 

At C-&,) : 

.F(S,) = R, +a2R2 (20 

where 

aad 

, I RI = -F,a,(St-a:S,)fa,S,F~ 

R2 = Za,S,(F’,a, -Cl) 

4~ = (aMIS -F,h)+al(&H;+SIN; 

-F;4JHF;a, -W (22) 

The equations at O@x) are the same as those in ref. [7]. The 
boundary conditions are that, S,(O) = S)(co) = 0; i = I, 3. 
The choice of the first boundary condition has been made 
on the basis of measurements in a natural convection plume 
reported by Pera aad Gebhart [S]. They found this mode of 
the disturbance to be more unstable than the symmetric 
mode. Such measurements in mixed convection plumes are 

a**-- 

U‘- 

.a - 

*.u - 
Q 

l .**- 

1.1*- 

..Y_ 

not yet available. The equations at zero order and at O(.su) 
are essentially the same as those in ref. (7). It is to be noted 
that the base flow has not been assumed to be parallel. The 
terms representing the non-parallel nature of the base flow 
are included in the governing equations for the disturbance 
at O(eu). Since the homogeneous problems for S2 and S, are 
the same as those for S,, it is required that 

s 
=(R,+erRr)Wd~=O (23) 

0 

and 

I 
lU(R,+a,RJWdq=O 
0 

(24) 

where W(a) is a non-trivial solution of the adjoint homo- 
geneous problem 

(F;a, 
f -R)(W”-a:W)+2F,a, W= 0 (25) 

with 

W(0) = W(yfoo) = 0. 

From equations (23) and (24), it is easy to see that 

x2 = -r R, Wdq/rR2Wdq 

and 

x, = -~R~Wd~~~R~Wd~. 

The chosen value of R, equation (19), is solved to determine 
S, and a,. Thea W(R) is determined from equation (25). 
With a, and W known, a2 can then be determined from 
equations (23). The procedure for obtaining I, is similar and 
is given in ref. [7]. 

The two perturbation parameters Q, and E” arise from 
distinct physical considerations. Yet the two can be related 
by 

&* = Rf$’ (26) 

where 

R = U,(v2k/g’BQo)“‘/v. 

. 

FCG. 1. Contours of constant amplification in natural (-) and mixed convection plumes (- - -). 
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Clearly 1 is independent of x. If 4 is 0( 1) or smaller, then 
the effect of mixed convection on the stability of the flow is 
inviscid in nature. 

Computed values of a,, a* and a, are listed in Table 1 at 
various values of R for Pr = 0.7. Using these values neutral 
stability and amplification contours can be constructed. 
These are shown in Fig. 1. 

RESULTS AND DISCUSSION 

Equation (19) was integrated inwards, that is. towards the 
centerline of the plume from its outer edge, by making use 
of the asymptotic form for S,(q) as n + co. A similar pro- 
cedure was used in obtaining a2 and a, from equations (23) 
and (24). respectively. The neutral stability curve, i.e. Q(G) 
on which a, z 0, is obtained by solving 

ai = a,,+s,z,+sua,, E 0. (27) 

The value of G at a given fl that one obtains from equation 
(27) depends on the value of R. In all the computations here, 
1 has been taken to be unity. The neutral curve so obtained 
is shown in Fig. I along with contours of constant ampli- 
fication. These latter curves represent the exponential growth 
of a disturbance of fixed frequency, i.e. w, as it crosses the 
neutral curve and propagates downstream. If A, is the ampli- 
tude of a disturbance at a downstream location corre- 
sponding to neutral stability and A, is its amplitude further 
downstream, then 

x G 
A,JA. = e*. A = - 

s 
ai d.r/d = - 5/3 a, dG (28) 

% (b > I 

with zi being the imaginary part of a. The neutral curve is 
A = 0. Curves of constant amplification have been obtained 
by determining a, at various values of G. keeping w fixed. 
The integral in quation (28) is then evaluated by the simple 
trapezoidal rule, with a step size in G of 2.5. Also shown for 
comparison, in Fig. I, are the neutral curve and contours of 
constant amplification for a natural convection plume. 

It is clear from Fig. I by comparing the neutral curves and 
those for A = 2, that the mixed convection effect stabilizes 
the flow considerably. The reason for this enhanced stability, 
lies in the changed nature of the velocity profile for the base 
flow, near the inflection point. Details of this line of reasoning 
can be found in ref. [9]. 
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APPENDIX. GOVERNING EQUATIONS OF THE 
BASE FLOW 

Ar O(eM) : 

F;(+l/S(3F,F;+2F2F;-F’,F;)+H2 =0 

H;+ 1/5Pr(3F,H;+2F,H’, +4H& +3H,F:) = 0 

F,(O) = F;(O) = F;(m)- 1 = H;(O) = H*(z) = 0 

F;(O) = 0.05982, H*(O) = -0.21831. 


